Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
BMC Oral Health ; 24(1): 359, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38509530

This systematic review explores the accuracy of computerized guided implant placement including computer-aided static, dynamic, and robot-assisted surgery. An electronic search up to February 28, 2023, was conducted using the PubMed, Embase, and Scopus databases using the search terms "surgery", "computer-assisted", "dynamic computer-assisted", "robotic surgical procedures", and "dental implants". The outcome variables were discrepancies including the implant's 3D-coronal, -apical and -angular deviations. Articles were selectively retrieved according to the inclusion and exclusion criteria, and the data were quantitatively meta-analysed to verify the study outcomes. Sixty-seven articles were finally identified and included for analysis. The accuracy comparison revealed an overall mean deviation at the entry point of 1.11 mm (95% CI: 1.02-1.19), and 1.40 mm (95% CI: 1.31-1.49) at the apex, and the angulation was 3.51˚ (95% CI: 3.27-3.75). Amongst computerized guided implant placements, the robotic system tended to show the lowest deviation (0.81 mm in coronal deviation, 0.77 mm in apical deviation, and 1.71˚ in angular deviation). No significant differences were found between the arch type and flap operation in cases of dynamic navigation. The fully-guided protocol demonstrated a significantly higher level of accuracy compared to the pilot-guided protocol, but did not show any significant difference when compared to the partially guided protocol. The use of computerized technology clinically affirms that operators can accurately place implants in three directions. Several studies agree that a fully guided protocol is the gold standard in clinical practice.


Dental Implants , Robotic Surgical Procedures , Surgery, Computer-Assisted , Humans , Dental Implantation, Endosseous/methods , Computers , Computer-Aided Design , Cone-Beam Computed Tomography , Imaging, Three-Dimensional
2.
J Clin Med ; 12(21)2023 Nov 03.
Article En | MEDLINE | ID: mdl-37959389

Titanium has been the material of choice for dental implant fixtures due to its exceptional qualities, such as its excellent balance of rigidity and stiffness. Since zirconia is a soft-tissue-friendly material and caters to esthetic demands, it is an alternative to titanium for use in implants. Nevertheless, bone density plays a vital role in determining the material and design of implants. Compromised bone density leads to both early and late implant failures due to a lack of implant stability. Therefore, this narrative review aims to investigate the influence of implant material/design and surgical technique on bone density from both biomechanical and biological standpoints. Relevant articles were included for analysis. Dental implant materials can be fabricated from titanium, zirconia, and PEEK. In terms of mechanical and biological aspects, titanium is still the gold standard for dental implant materials. Additionally, the macro- and microgeometry of dental implants play a role in determining and planning the appropriate treatment because it can enhance the mechanical stress transmitted to the bone tissue. Under low-density conditions, a conical titanium implant design, longer length, large diameter, reverse buttress with self-tapping, small thread pitch, and deep thread depth are recommended. Implant material, implant design, surgical techniques, and bone density are pivotal factors affecting the success rates of dental implant placement in low-density bone. Further study is required to find the optimal implant material for a clinical setting's bone state.

...